INFOSOFT IT SOLUTIONS

Training | Projects | Placements

Revathi Apartments, Ameerpet, 1st Floor, Opposite Annapurna Block,
Info soft It solutions, Software Training & Development 905968394,918254087

IBM QUANTUM COMPUTING TRAINING

1: Introduction to Quantum Computing

- Overview of Quantum Computing
 - History and background
 - Classical vs. quantum computing
- Basic Concepts of Quantum Mechanics
 - Quantum states and qubits
 - Superposition and entanglement
- Introduction to IBM Quantum Experience
 - Overview of IBM Quantum and Qiskit
 - Setting up IBM Quantum account

2: Qubits and Quantum Gates

- Qubit Representation
 - Bloch sphere representation
 - Quantum state notation
- Quantum Gates and Circuits
 - Single-qubit gates: X, Y, Z, H, S, T
 - Multi-qubit gates: CNOT, Toffoli, Swap
 - Building quantum circuits in Qiskit

3: Quantum Measurement and Noise

- Measurement in Quantum Computing
 - Measurement bases and probabilities
 - Collapsing quantum states

Quantum Noise and Error

- Types of quantum errors
- Error correction basics
- Noise models in Qiskit

4: Quantum Algorithms I

Quantum Algorithm Basics

- Introduction to quantum algorithms
- Quantum parallelism and interference

• Simple Quantum Algorithms

- Deutsch-Jozsa algorithm
- o Bernstein-Vazirani algorithm
- Implementing algorithms in Qiskit

5: Quantum Algorithms II

Grover's Algorithm

- Problem statement and solution
- Circuit implementation

Shor's Algorithm

- Quantum Fourier Transform
- Integer factorization
- Implementation challenges

6: Quantum Computation Models

Circuit Model of Quantum Computation

Gate-based quantum computing

Alternative Models

- Measurement-based quantum computing
- Adiabatic quantum computing

7: Advanced Quantum Algorithms

Quantum Phase Estimation

- Applications and importance
- Implementation details

Quantum Simulation

- Simulating quantum systems
- Applications in chemistry and materials science

8: Quantum Programming with Qiskit

- Qiskit Basics
 - Qiskit framework and components
 - Writing and running quantum programs
- Qiskit Terra and Aer
 - Circuit construction and simulation
 - Noise simulation and analysis

9: Quantum Information Theory

- Quantum Entropy and Information
 - Shannon entropy vs. quantum entropy
 - Quantum mutual information
- Quantum Cryptography
 - Quantum key distribution (QKD)
 - Protocols like BB84 and E91

10: Practical Quantum Computing

- Quantum Hardware
 - Superconducting qubits
 - Trapped ions and other technologies
- IBM Quantum Systems
 - Overview of IBM Q systems
 - Accessing and using IBM Quantum devices

11: Research and Applications

- Current Research in Quantum Computing
 - State of the art and future directions
- Industry Applications
 - Finance, cryptography, optimization

ADVANCE TOPICS ;-

1: Advanced Quantum Mechanics for Computing

- In-Depth Quantum Mechanics
 - o Review of basic quantum mechanics
 - Advanced topics: tensor products, Bell states
- Advanced Qubit Operations
 - Multi-qubit systems and entanglement
 - Density matrices and mixed states

2: Quantum Gates and Circuits

- Advanced Quantum Gates
 - Multi-controlled gates
 - Universal quantum gates and gate decomposition
- Circuit Optimization
 - Gate efficiency and optimization techniques
 - Circuit depth and error mitigation

3: Quantum Error Correction

- Error Sources in Quantum Computing
 - Decoherence and noise models
- Quantum Error Correcting Codes
 - Shor code, Steane code, and surface codes
 - Implementing error correction in Qiskit

4: Quantum Algorithms III

- Advanced Grover's Algorithm
 - o Applications and modifications
 - Amplitude amplification
- Advanced Shor's Algorithm
 - Detailed steps and implementation
 - Quantum modular exponentiation

5: Quantum Complexity Theory

Quantum Complexity Classes

BQP, QMA, and other complexity classes

Quantum Speedup

Criteria and examples of quantum advantage

6: Quantum Information Theory and Cryptography

Advanced Quantum Information Theory

- Entanglement measures and distillation
- Quantum channel capacities

Advanced Quantum Cryptography

- Quantum key distribution beyond BB84
- Quantum teleportation and superdense coding

7: Quantum Machine Learning

• Introduction to Quantum Machine Learning

- Quantum data and algorithms
- Variational quantum algorithms for machine learning

Implementation in Qiskit

- Qiskit Machine Learning module
- Practical examples and case studies

8: Quantum Simulation and Chemistry

Quantum Simulation

- Simulating quantum systems on quantum computers
- Applications in condensed matter physics

Quantum Chemistry

- Quantum algorithms for chemistry
- Implementing VQE and QAOA for molecular problems

0

9: Topological Quantum Computing

- Introduction to Topological Quantum Computing
 - Anyons and topological qubits
- Implementing Topological Codes
 - Surface codes and fault-tolerance

10: Quantum Hardware and Architecture

- Quantum Hardware Advances
 - Superconducting qubits and their challenges
 - Other qubit technologies: trapped ions, topological qubits
- Quantum Computing Architectures
 - Networked quantum computing
 - Scalable quantum computing architectures

11: Current Research and Developments

- Frontiers of Quantum Computing Research
 - Recent breakthroughs and ongoing research areas
- Quantum Computing Ecosystem
 - Industry players and research institutions
 - Collaborative research and open science